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Abstract 

We present the exact solution for the sequential, random, irreversible filling of one- 
dimensional lattices by linear n-mers using the end-on filling mechanism. The results 
are extrapolated to the n--> o~ limit (a variation on the car-parking problem) to yield 
a saturation coverage (packing density) of 0.7350. The end-on filling mechanism involves 
two steps for a single filling event. First, the landing site for one endpoint of the filling 
species is chosen and then the second endpoint is subsequently chosen (from unfilled 
sites an appropriate distance from the first endpoint). We compare this mechanism to 
the conventional, one-step filling mechanism, where both endpoints of the filling species 
are chosen simultaneously. We present results detailing how the lattice saturation coverage 
varies for the two mechanisms. In addition, we extend our analysis to consider filling 
in the presence of a time-dependent, random distribution of inactive sites. 

1. Introduction 

A problem that has received considerable attention is the car-parking problem, 
where intervals of unit length are randomly and sequentially placed on an infinite 
line such that the intervals do not overlap. The solution to this problem was first 
obtained by R6nyi [1]. Here, we consider a variation on the problem, where we vary 
the mechanism used to place the intervals. 

In the standard car-parking problem, the intervals are placed by simultane- 
ously choosing both endpoints or, equivalently, choosing the left (right) end- 
point which specifies the location of the right (left) endpoint (conventional 
mechanism). If this new interval overlaps a previously-placed interval, the new 
interval is removed. 

In the variation considered here (end-on mechanism), we first choose one 
endpoint of the interval, then sequentially place the second endpoint (an appropriate 
distance away) on a randomly-chosen side of the first endpoint. If  the new interval 
overlaps a previously-placed interval, the second endpoint is removed and placed on 
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the opposite side of the first endpoint (which remains fixed). If this also results in 
overlap with a previously-placed interval, the new interval is removed. 

The first phase of  end-on filling is identical to conventional filling (both 
mechanisms randomly choose a pair of endpoints). However, the testing (if necessary) 
on the second side of the initial site distinguishes the end-on filling mechanism 
from the conventional filling mechanism. 

The distinction between these two mechanisms has not always been recognized 
and the end-on mechanism has only been considered in a few previous treatments 
for simple discrete lattice filling by dimers [2-7] .  The case of  simultaneous end- 
on filling by monomers and dimers has also been considered [2,3]. 

The car-parking problem is equivalent to the n ---) oo limit of  one-dimensional 
(1D) n-mer filling of a discrete lattice. An n-mer is a filling species which occupies 
a string of n adjacent lattice sites; it places no other restrictions on the filling 
species. By studying n-mer fillings over a wide range of values of  n, we expect to 
be able to extrapolate to obtain information about the n---) oo limit. 

The discrete lattice problems are of interest themselves, since numerous 
physical processes have been modelled as sequential, irreversible (immobile), n-mer 
filling of a lattice (for a brief review, see Nord and Evans [4] and references 
therein). One-dimensional examples include reactions at specific sites on a polymer 
chain (see also [5]); and two-dimensional (2D) examples include adsorption onto 
surfaces and reactions between groups on adjacent surface sites. The results we 
obtain here should aid in the determination of  the actual mechanism by which a 
particular physical process occurs. 

Here, we confine our attention to random-filling processes, where the rates 
at which filling events occur are independent of the local environment of  the site(s) 
being filled. Ira general, since there is no equilibrating mechanism present, the final, 
stationary state contains unfillable, empty sites (see fig. 1). A primary quantity of  
interest is the saturation coverage e TM, which equals the final fraction of  sites which 
are filled. 

To illustrate the difference between the mechanisms, consider the landing of  
a single dimer (n = 2) upon a string of  four adjacent empty sites (see fig. 2) [5]. 
Using conventional filling, there are three possible filling events (filling the left 
pair, middle pair, or right pair), resulting in three distinct final states (each occurring 
with a probability of 1/3). Using end-on filling, the same three states are still possible; 
however, the probability of each occurring is different (3/8, 1/4, 3/8, respectively). 
There is an enhanced probability of filling a pair of  sites near the end relative to 
the pair in the middle. 

Here, we compare the results obtained when infinite 1D (linear) lattices are 
filled by linear n-mers using the two diffcrcnt mechanisms. For the end-on mechanism, 
we extrapolate to obtain results for the car-parking (infinite n) limit. We also briefly 
comment  on the extension to 2D (square) lattices. Additionally, we consider filling 
processes where the lattice contains a time-independent random distribution of  
inactive sites (which cannot be filled). 
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Fig. l .  i rreversible filling of  a (a) linear, (b) square lattice 
by dimers.  A site labelled with an "o"  can never  fill. 
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Fig. 2. Possible d imer  fil l ing events on a string of  four empty sites using the (a) convent ional ,  
(b) end-on fi l l ing mechanism.  The probabili ty of  each event  is 1]3 in (a) and as label led in (b). 
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2. Method 

The 1D conventional filling results have previously been determined by a 
variety of  techniques. For arbitrary length n, the most extensive published set of 
results are those of Gonzalez et al. [8] and many of these have been recalculated by 
Wolf  et al. [9] with higher precision. For the 1D end-on filling mechanism, only 
results for dimer filling, mostly approximate, have previously been published 
[2 ,3 ,5 -7 ] .  Page [6] was the first to consider the end-on mechanism, and he found 
®sat= 0.87668 for end-on dimer filling (which is consistent with the more recent 
results). Here, we present the exact solution for 1D end-on n-mer filling for arbitrary 
length n. 

The end-on filling results are obtained from the numerical  integration of  rate 
equations for the probabilities of various configurations of empty sites. These equations 
result when the appropriate master equation is recast in hierarchical form and the 
resulting (infinite) hierarchy is truncated. The truncation leads to exact results in 
1D [10]. 

Let Po i denote the probability that a randomly-chosen string of  i sites 
contains all empty sites and let Pa denote the probability that a randomly-chosen site 
is filled. Thus, Po 1, Po2 . . . .  denote the probabilities that a randomly-chosen single 
site, pair of  adjacent sites . . . . .  are all empty, respectively, and Paoia is the probability 
that a randomly-chosen string of i + 2 sites contains i empty sites surrounded by a 
pair of filled sites. The Po i can be considered as functions of time t or lattice coverage 
®. The hierarchy of  rate equations for 1D, end-on, n-mer filling can be written down 
as follows: 

I n~2 n--2 
d/dt(P°I)=-k POI - E Pa°i+l+ja 

i=0 j=O 

+ ( 2 n - 2 )  P°2~-I + ~. P°t+la , 
l=n-I 

(1) 

I n-3( 1 n-3-1 1 
d / d t ( P o . ) = - k  2Po. + ~.~ e o . -  ~.~ Z Pa°i+l+ja 

l=0 i=O j=O 

n-2 n-l+l )1 

d/dt(Pon+m) 

(2) 

I n-3-m( l 
= - k  2(m+ l)Pon+m + t~_O ~POn+m- E 

- i = 0  

h i , ,  
+ 2 ~ . ,  1 2 PO2n+m+l + E POn+m+i a 

1=0 i=1+1 

n-3 -l-m I 
E Paoi+n+m+j a 

j=0 

m < n - 2 ,  (3) 
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where k is the rate constant for the filling process. Since we are only concerned 
with random-filling processes, the rate constant is the same for all of  the terms. In 
eq. (2), the sum over l = 0 to n -  3 is set equal to zero if n = 2 and in eq. (3), the 
sum over 1 = 0 to n -  3 -  m is set equal to zero if  m = n -  2. 

We consider only the filling of  uniform, infinite, initially-empty lattices, 
which ensures both translational invariance (all sites are equivalent) and that P O  i = 1 

at t = 0  for a l l i .  
We will consider the physical interpretation of  these equations term by term. 

In eq. (1), the first term results from the destruction of  the empty site by the first 
end of  an n-mer landing on it. The rate that this occurs depends upon the probability 
a single site is empty (where the first end of  the n-mer can land) and adjacent to 
a set of  empty sites of sufficient length for the second end of  the n-mer to land. 
Hence, the probabilities of  all lattice configurations containing filled sites, placed 
such that the second end cannot land, are subtracted from the probability that a 
single site is empty. 

The second term in eq. (1) results from an n-mer landing with its first end 
sufficiently close to, but not on, the site of  interest, such that the site of  interest 
may be filled when the second end of  the n-mer lands. Since there are two sides 
to the site, there is a factor of  2 in front of  this term (one for each side). If  the 
second end of  the n-mer may land in either direction, the probability that it fills the 
site of  interest is only 1/2. However,  a filled site may exist such that the second 
end "of the n-mer may only land covering the site of  interest (thus, for those 
configurations, the probability that the site of  interest is filled is unity). 

As an example, consider trimer filling (n = 3). For clarity, we underline the 
site of  interest. We note, however, that since all sites on the lattice are equivalent, 
the underline has no mathematical significance. 

d / d t ( P o )  = - k [ P o  - P a o a  - Paoo_a - Pao_oa - Paoo_oa 

+ 2(1/2 P o o o o o  + Poo_oa + P o o o o a )  

+ 2(1/2 P o o o o o  + Po_ooa + P o o o o a ) ] ,  (4) 

where P a o o a  = Pao2a ,  P a o o o  = P a o  3, P o o o o o  = Po5 . . . . .  In eq. (4), the middle 
term corresponds to cases where the first end of  the n-mer lands on the site adjacent 
(arbitrarily, on the right) to the site of interest, and the last term corresponds to 
cases where the first end lands on the next-nearest neighbor to the site of  interest. 

The first term in eq. (2), as well as in eq. (3), corresponds to the ways an 
n-mer can land such that it only fills sites contained in the configuration of  interest. 

The second term in eq. (2), or eq. (3), corresponds to all ways that an n-mer 
can destroy the configuration of  interest by having its first end land on some site 
within the configuration, but its second end lands on some site external to the 
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configuration. Thus, this term is analogous to the first term of  eq. (1) and the 
interpretation is similar. 

The third term in eq. (2), or eq. (3), corresponds to the first end of  the n-mer 
landing external to the configuration of interest and the second end landing somewhere 
within the configuration, and is completely analogous to the second term of  eq. (1). 

These equations can be recast in terms of configurations involving only 
empty sites through conservation of probability. Since any site must either be 
empty, "o", or filled, "a", we know P o  + P a  = 1. Similarly, P o  = P o o  + P o a ,  since 
the site to the right of  the empty site must either be filled or empty. Hence, 
P o a  = P o  - Poo.  By continuing in this fashion, eqs. (1) - (3)  can be written as follows: 

d / d t ( P o  1 ) = - k  [ 2 n P o  n - n P o 2 n _ l  ], (5) 

I n-1 1 
d / d t ( P o n ) = - k  2 P o  n +  ~ ,  ( 4 P o , +  l - P o z n + t _  l ) - n P o 2 n _  1 , 

/=1 
(6) 

d / d t ( P o . +  m ) = - k  I(2m + 2)POn+rn - (n - m - 2)Po2, ,_ 1 

+ 
gl - - m - - 2  

Z (4P°n+m+l-POZn+m+l-1) 
/=1 

+ ( 2 P o 2 ~ + t _  1 - P o 3 n + t _ 2 )  
/=0 

m < n -  2, (7) 

where the sum over i = 1 to n - m - 2 in eq. (7) is set equal to zero if m = n - 2. 
For m > n -  2, it is possible to show that 

Pon+ m = P o 2 n _ 2 e x p [ - k ( m - n + 2 ) t ]  m > n - 2 ,  (8) 

through the use of  a shielding property for strings of  empty sites (see appendix). 
Given this closed set of  coupled equations, it is now possible to numerically 

integrate to obtain the various probabilities as functions of  time (or coverage). 
The above equations can be modified to consider the case where the lattice 

contains a time-independent, random distribution of inactive sites. Since filling 
events only occur at active sites, we need to consider the hierarchy of  equations for 
the probabilities that strings contain sites which are all both  empty a n d  active [11]. 
Therefore, each term in the equations is multiplied by a factor related to the probability 
that all of  the sites in the string are active. For a randomly-chosen string of  length 
i, since the distribution of inactive sites is random, the probability that all of  the 
sites in the string are active is 13i, where 13 is the probability that any given site is 
active. The results are described below. 
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3. Results 

3.1. SIMPLE FILLING 

In table 1, we present the results for the saturation coverage for 1D n-mer 
filling. As the length n increases, we observe that O sat decreases since larger groups 
of  sites can remain empty (up to n -  1 sites). A plot of  the saturation coverage 

Table 1 

Comparison of saturation coverages for 1D conventional and end- 
on filling mechanisms 

Length of Saturation coverage 
filling species Conventional a) End-on 

2 0.86466 0.87668 
3 0.82365 0.82762 
4 0.80389 0.80351 
5 0,79227 0.78930 
6 0.78463 0.78000 
7 0.77921 0.77335 
8 0.7751 0.76843 
9 0.7720 0.76463 

10 0.7695 0.76160 
100 0.7497 0.73758 
=, 0.7476 0.73512 b) 

a)The results for lengths 2 -7  are taken from Wolf et al. [9] and 
the results for longer lengths are taken from Gonzalez et al. [8]. 

b)Result from Monte Carlo simulation [12] (+0.00100). 
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Fig. 3. A plot of saturation coverage versus 1/n for 
( - - l - - )  conventional, ( - - E l - - )  end-on filling. 
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versus l /n is presented in fig. 3 for each mechanism [13]. We observe that the plot 
is almost linear for both mechanisms (a slight curvature exists in both cases). Since 
the curvature is slight, we used a linear extrapolation of  the end-on results to obtain 
the end-on car-parking saturation coverage. In order to improve the extrapolation, 
we ran an additional data point for n = 200 (®sat = 0.73628). We then used the line 
defined by the points for n = 100 and n = 200, which gave a value of  0.73498 for 
the end-on car-parking saturation coverage. (Note that the number of  coupled differential 
equations increase as n increases, which leads to difficulty in numerically integrating 
for large n.) Due to the slight upward curvature, this is the minimum possible value 
and it seems reasonable to assume a value of  0.7350 for O TM. This value is consistent 
with the Monte Carlo result given in table 1. 

From fig. 3, we also observe that, for end-on filling relative to conventional 
filling, o~at is initially larger (for small n) but decreases faster. This can be explained 
by considering the ratio R of  the number of  filling events that occur immediately 
adjacent to a f i l led site to the number of  possible filling events. 

Let us begin by considering dimer filling (n = 2) for simplicity. An unfillable, 
empty site is created when a dimer fills a pair of  sites which is separated by one 
site from a previously-filled site. If the dimer, by landing, creates an enclosed string 
of  m empty sites, where m is odd, at least one of  those m sites will eventually become 
unfillable (since sites are filled in pairs). Furthermore, even if m is even, it is likely 
that some of the sites will become unfillable. Even for a string of  four sites there 
is substantial probability that a dimer will land in the middle isolating the two end 
sites (see fig. 2). The only way a dimer can fill sites which does not create additional 
enclosed strings of m empty sites is to fill sites at the end (other than the obvious 
trivial cases). We therefore postulate that the filling mechanism which has the 
greater probability of  filling the end sites, of  an empty string, will have the higher 
saturation coverage (less isolated, unfillable sites). To illustrate, we begin by considering 
dimer filling of a string ofm > 3 sites by the two mechanisms (for m < 3, the mechanisms 
are trivially equivalent). 

For conventional filling there are m - 1 possible filling events, corresponding 
to the locations where the left (right) end of  the dimer may be placed (see fig. 4(a)). 
Two of these events correspond to filling at an end. Hence, R c = 2/(m - 1) for conven- 
tional dimer filling. 

For end-on dimer filling there are m possible filling events, corresponding to 
the locations where the first end of  the dimer may be placed (see fig. 4(b)). Two 
of these events correspond to the first end of  the dimer landing on the site at the 
end of  the string. Additionally, if the first end of  the dimer lands at a site adjacent 
to the end site, there is a probability of  1/2 that the second end will fill the end site 
(since it is equally likely to fill either adjacent empty site). Since there are two sites 
which are located adjacent to end sites, this adds an additional 2(1/2) = 1 possible 
filling event at the end. Therefore, R e = 3/m for end-on filling. 

For m > 3, R e > R c since 3/m > 2/(m - 1). Consequently, there is an enhanced 
probability of  filling at the end for the end-on mechanism. Therefore, we expect the 
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Fig. 4. Poss ible  d imer  fil l ing events  on  a str ing o f  ten empty  

sites using the (a) convent ional ,  (b) end -on  filling mechan i sm.  

saturat ion coverage to be greater for end-on filling, which agrees with the results 
given in table 1. 

I f  we extend this argument  to n = 3, tr imer filling, we find R c = 2 / ( m  - 2) and 
R e = 3/m, for m > 4 (nontrivial cases). If  m = 5, then one t r imer will land, regardless 
of  the mechanism. If  m = 6, then R e = R c. If  m > 6, then R e > Re, as for dimers. Therefore, 
we again expect  to find a greater saturation coverage for end-on filling (in agreement  
with the results in table 1). 

For  n = 4, te tramer filling, R c = 2 / ( m  - 3) and R e = 3/m, for m > 6. I f  only  one 
te t ramer  can fill a string, the mechanisms are effect ively equivalent.  In order  to 
have two tetramers fill a string, m > 8. For  m = 8, R e < R c, for m = 9, R e = R c,  and 
for m > 9, R e > R c. Hence, for a string o f  exactly eight empty sites, convent ional  
fi l l ing is more l ikely to fill the string with two tetramers. However ,  for longer  
strings, end-on fill ing is more l ikely to fill at the end of  the s t r ing  (which should 
decrease the number  of  small isolated strings of  empty  sites and hence increase the 
number  of  tetramers that can be placed). The net result is that the saturation coverages, 
for the two mechanisms,  are almost  equal (see table 1). 

For  arbitrary n, we observe that R c = 2 / ( m  - n + 1) and R e = 3 / m  ( m  > 2 n  - 1). 
Therefore,  as n increases further, R c > R e for strings of  length 2n (and slightly longer). 
Since these lengths cannot  be subdivided into shorter strings where further  fil l ing 
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can occur, they seem to have the greatest impact upon the saturation coverage. 
Therefore, conventional filling becomes the mechanism with the larger saturation 
coverage for longer filling species. 

We anticipate that the behavior will be similar in higher dimensions. Preliminary 
Monte Carlo simulation results for 2D dimers and trimers indicate a higher saturation 
coverage for end-on filling, as expected (see table 2). Results for longer filling 
species in 2D are not yet available. 

Table 2 

Comparison of saturation coverages for 2D conventional and 
end-on filling mechanisms 

Length of Saturation coverage a) 
filling species Conventional End-on 

2 0.90687 0.91882 
3 0.84659 0.85411 

a)Results from Monte Carlo simulation [12] (+0.00015). 

3.2. FILLING WITH INACTIVE SITES 

It may be that the lattice contains a time-independent distribution of  (immobile) 
sites which are inactive with regard to the filling event being studied. We assume 
that the inactive sites are randomly distributed, which simplifies the solution [11]. 
Define a as the fraction of sites which are inactive and ~ as the fraction of sites 
which are active (/3 = 1 -  a). 

By introducing inactive sites, it is possible to increase the fraction of active, 
empty sites at saturation P0 Act. This then leads to an increase in the fraction of 
active, empty sites which are adjacent tofilled sites at saturation P0 ER. For a reaction 
which proceeds by the Eley-Rideal  mechanism, P0 ER is an important quantity since 
it gives the number of sites where reaction can occur. For example, being able to 
vary this quantity could be useful in determining the composition of a surface for 
optimum catalytic activity. Monte Carlo simulations using the end-on mechanism 
have been found to be consistent with experiment for, at least, one such system [14]. 

In 1D, exact solutions can be obtained. For conventional filling we find: 

pER = /3e-2/3 _ 13 a 2, (9) 

where the first term is the familiar result (see Evans and Nord [11] and references 
therein) for the fraction of  active sites which are empty Po AcT, and the second term 
f la  2 subtracts off the fraction of  active, empty sites which are surrounded by 
inactive sites. 
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For 1D end-on dimer filling, we find: 

Po ER = (27r) 1/2 exp[(2 -/3)2121 (erf(~/2) - erf[(2 -/~)/421 } - 1 7 - / S a  2, (10) 

where erf is the error function. Again, the last term /3a 2 subtracts off  the fraction 
of  active, empty sites which are surrounded by inactive sites. 

pER and pACr are plotted as a function of a for 1D dimer filling in fig. 5. 
From fig. 5, we find that pER reaches a maximum value of 0.1402 (0.1280) when 
a = 0.925 (0.922) for conventional (end-on) filling. 
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...... 1 I ....... l " 1  ~ ' ~  

0 0.2 0.4 0,6 0,8 

Ct 

Fig. 5. a dependence of Po AcT and Po ~ for random dimer filling 
of a 1D linear lattice for both conventional and end-on mechanisms. 

Approximate 2D square lattice results were obtained by truncating the infinite 
hierarchy of rate equations using techniques described by Nord and Evans [4] 
(specifically, we employed a third-order severe truncation). The accuracy of  
the 2D approximate truncation results has been confirmed by Monte  Carlo 
simulations [3, 12]. The results for Po ER and Po Act are presented in fig. 6. We see in 
fig. 6, as we did in fig. 5, that the peak values are smaller and occur at higher values 
of a for end-on filling; however,  the differences are not large. 
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Fig. 6. a dependence of p~CT and P0 ng for random dimer filling 
of a 2D square lattice for both conventional and end-on mechanisms. 

4. Conclusions 

A plot of •sat versus  1/n is almost linear, allowing approximate results to be 
obtained for arbitrary values of n. For the end-on car-parking problem, the extrapolated 
value of ®sat = 0.7350, which is consistent with the Monte Carlo simulation result. 

While the conventional and end-on mechanisms produce similar results, the 
results are noticeably different. Our preliminary 2D studies indicate that the variation 
in results, due to the mechanism, appears to be similar for 1D and 2D processes. 

The end-on mechanism yields a higher saturation coverage for 1D dimer, 
trimer, and tetramer filling, but as the filling species becomes longer, the conventional 
mechanism has the higher saturation coverage. This can be explained by considering 
the ratio of the possible filling events at an end site relative to the number of 
possible filling events. 

The presence of inactive sites has a similar effect on the two mechanisms. 
For dimer filling, the end-on mechanism's superior ability to fill sites at the end of 
a string makes it necessary to go to a slightly higher fraction of inactive sites in 
order to isolate a large number of active, empty sites at saturation. 

Finally, the effect due to the mechanism varies depending upon the length 
of the filling species, the presence of inactive sites, and competitive filling [3]. 
Thus, it would seem reasonable that the effects would be cumulative. Therefore, if 
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a problem was considered which involved all of  these considerations, it would be 
very important to use the correct mechanism for the process being considered. An 
example of  such a problem is the simultaneous chemisorption of  one-point and two- 
point CO on binary alloys consisting of  both active and inert component  metals, as 
considered by Hayden and Klemperer [14]. 

Appendix 

For m > n - 2, eq. (7) simplifies to 

I n-2 
d / d t ( P o n + m ) = - k  ( n + m ) P o , +  m + 2 ~ (2Po~+m+t+ 1 1=0 -- PO2n+m+l )1' (A1) 

since the second term in eq. (7) is no longer applicable. Define the conditional 
probability Qo~), =-Po,+ 1/Pon that a site is empty given that it is adjacent to a 
string of  n empty sites. 

We can now make use of the following shielding property [10]: Consider a 
wall  o f  sites specified empty which divides the lattice into two disconnected regions, 
and which is sufficiently thick that a fi l l ing event occurring on the lattice is not 
simultaneously affected by the state o f  sites on both sides o f  the wall; then such a 
wall  completely shields sites on one side f rom the influence of  those on the other. 
For end-on n-mer filling, a filling event is influenced by n -  1 sites on each side 
of  the site where there first end lands; hence, 2n - 1 sites are involved. Therefore, 
for a filling event to not be influenced by sites on both sides of  the wall, the wall 
must be of  thickness 2n - 2. Therefore, a string of  empty sites of  length 2 n -  2 is 
sufficient to block the influence of sites on one side on sites on the other side. 
Consequently,  Qo~)2n_ 2 = Q°~)zn - 1 = Qo~)2n = . • • • Proof  of  the shielding property 
is via self-consistency. 

Next, we derive the rate equation for the t ime-dependence of  Q o ~ n - 2  

= P°2.  - 1 / P ° 2 n  - 2 : 

d/dt(Qo~2n_2) = 
P o 2 n - 2  (d /d t  ( P o 2 . -  1 )) - P o 2 n -  1 (d /d t  (Po2n-2) )  

= Q°~)2n-2 { d/dt(PO2n-1) d/dt(Po2n-2) 

(A2) 

(A3) 

By use of  (A1), we find: 

d /d t  (Po2n_2) = - k  I n--2 1 
( 2 n -  2)Pozn_2 + 2  ~ (2Po2n+t_l  - P ° 3 n + l - Z )  , l=0 (A4) 
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d /d t  (Po2n_ 1) = - k  

Hence, 

I n-2 
(2n-  1)PO2n_ 1 +2 ~ (2Po2n+l 

l=0 
-- PO3n+l- 1 )]" (A5) 

d / d t ( P o 2 n - 2 )  

P°2n -2 

d/d t (Po2n-1  ) 

P°2n - 1 

: o 

n-2 ] 
= -k  ( 2 n - 2 ) + 2  ~ (2Qo1+ 1 ~b2n_ 2 - Q O n + l O 2 n _ 2 )  , (A7) 

/=0 

= - k  ( 2 n - 1 ) + 2 y ,  ~ - -  (18) 
1=0 k. PO2n_ 1 Po2n_ 1 

l n-2 J 
= - k  ( 2 n - 1 ) + 2 ~ . ( 2 Q o ~ + l ¢ 2 . _ l - Q o , , + t ~ 2 n _ l )  , (A9) 

l=0 

which, by virtue of the above shielding property, 

l n-2 ] 
= - k  ( 2 n - 1 ) + 2 Z ( 2 Q o t + l d ~ z n _ 2 - Q o n + l r p 2 . _ 2 )  . (A10) 

/=0 

Therefore, inserting (17) and (110) into (13), we find: 

d/dt (Q°cf2n-2  ) = Q°$2n -2 ( -k) .  (Al l )  

B y  use of the initial condition Qocp2 ~_ 2 = 1 at t = 0 ,  we may integrate (A11) 
to find: 

Qoc)zn_ 2 = exp(-kt). (A12) 

Therefore, 

1902n- 1 = (Po2n - 2) (Qo~2n - 2) = Po2n - 2 exp(-kt). (A13) 

The probabilities that longer strings of sites are all empty can be found 
trivially from this result by noting that: 

Po2n+r ) =PO2n+r_l(QO~)2n+r_ 1), PO2n+r = Po2n+r_ 1 PO2n+r_l (A14) 
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which, by invoking the shielding property, 

= P ° 2  n + r -  1 ( Q °  02 n - 2 ) = P02  n + r -  1 exp(-k t), 

and continuing in a similar manner 

= Poz ,+r_  z exp(-2kt) = Po2n+r_ 3 exp(-3kt) 

= " .  = P ° z . - 2  exp[- ( r+  2)kt]. 

This can be rewritten as: 

Po,,+m = Pozn_  2 e x p [ - ( m - n + 2 ) k t ]  m > n - 2 ,  

by choosing m = r + n. 

(A15) 

(A16) 

(A17) 
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